CompactRIO Developers Guide

Recommended LabVIEW Architectures and Development Practices

for Machine Control Applications

Section Five
Deploying and Replicating Systems

This document provides an overview of recommended architectures and development practices when building machine
control applications using NI CompactRIO controllers and NI touch panel computers.
The examples and architectures are built using NI LabVIEW versions 8.6 and 2009.

‘ NATIONAL
December 2009 ' INSTRUMENTS

CONTENTS

CHAPTER 8
Deploying and Replicating ApplicationS...........cocoooooovoooeeoeeeoeeeeeeeeeeee 195
Application DePlOYMENTo e 195
Deploying Applications to CompactRIO ... 195
Deploy a LabVIEW VI onto Volatile MemOry ... 195
Deploy a LabVIEW VI onto Nonvolatile MemMOryovviiiiiiiiiiiiieeeee e 196
Deploying Applications to aTouch Panelcoocooiiiiiii e 199
Configure the Connection to the ToUCh Paneloooiiiiiiiiiiiiice e, 199
Deploy a LabVIEW VI onto Volatile or Nonvolatile Memory........cccvvvvviiiiiiiiiiicceieeee 199
Deploy an Executable Touch Panel Application to a Windows CE or XP Embedded Target......... 203
Deploying Applications that Use Network-Published Shared Variables........................ 204
Network Shared Variable Backgroundoooiiiiiiiiiiie e 204
Deploy Shared Variable Libraries to a Target That Hosts Variables..............ccccccoiiiviiiiccc 204
Undeploy a Network Shared Variable LIDrarycccccciiiiiiiiiiii e 206
Deploy Applications That Are Shared Variable CHentsoooviiiiiiiiie e 206
Recommended Software Stacks for CompactRIOccoooiiiiiiiii 208
SYSTEM REPICATION ..o 209
Real-Time Replication Utility VIS ..o 209
Building a Replication ULility ... 2N
NI-RIO System RepliCation TOOIScciiuiiiiiic e 211
[P PIOTECTION ... e, 212
Locking Algorithms or Code to Prevent Copying or Modification.................................. 212
Protect DEPRIOYEA COUBiiiiiiiiiiiiie e 212
Protect INAIVIAUAI VIS ... e 212
Lock Code to Hardware to Prevent IP Replication.............ccccoooiiiiiiiiiiceeeeeeee e 214
Acquire the MAC Address of Your CompactRIO Systemooooiiiiiiiiiiii e, 215
CompactRIO Information Retrieval TOOIS.........ciiiiiiiiiiiiiii e, 216
Porting to Other PlatformSc.o.ovoieeeee e 217
LabVIEW Code Portabilitycoooiiiiieeeeeeeee e 217
NI Single-Board RIOcooooiiiiocee e 217
Port CompactRIO Applications to NI Single-Board RIO or R Series Devicescccccvveeeeeeeeenn. 218

Example of Porting a CompactRIO Scan Mode-Based Application to NI Single-Board RIO........ 219

CHAPTER 8
Deploying and Replicating Applications

Application Deployment

All LabVIEW development for real-time targets and touch panel targets is done on a Windows PC. To run the code
embedded on the targets you need to deploy the applications. Real-time controllers and touch panels, much like a
PC, have both volatile memory (RAM) and nonvolatile memory (hard drive). When you deploy your code you have the
option to deploy to either the volatile memory or nonvolatile memory.

Deployment onto Volatile Memory
If you deploy the application onto the volatile memory on a target, the application does not remain on the target after
you cycle power. This is useful while you are developing your application and testing your code.

Deployment onto Nonvolatile Memory

If you deploy the application onto the nonvolatile memory on a target, the application remains after you cycle the
power on the target. It is also possible to set applications stored on nonvolatile memory to start up automatically
when the target boots. This is useful when you have finished code development and validation and want to create a
stand-alone embedded system.

Deploying Applications to CompactRIO
Deploy a LabVIEW VI onto Volatile Memory

When you deploy an application into the nonvolatile memory of a CompactRIO controller, LabVIEW collects all the
necessary files and downloads them over Ethernet to the CompactRIO controller. To deploy an application you need to

= Target the CompactRIO controller in LabVIEW
= Open a VIl under the controller
= Press the “run” button

LabVIEW verifies that the VI and all subVIs are saved, deploys the code to the nonvolatile memory on the
CompactRIO controller, and starts embedded execution of the code.

3

Deplayrment Skatus

Initializing. ..
Calculating dependencies. ..
Checking items For conflicts. This operation could bake a whils. ..

Deployment Progress

[]

[#] Close on successful completion | Close | Cancel

Figure 8.1. LabVIEW Deploying an Application onto the Nonvolatile Memory of the Controller

195

Deploy a LabVIEW VI onto Nonvolatile Memory
Once you have finished developing and debugging your application, you likely want to deploy your code onto the
nonvolatile memory on the controller so that it persists through power cycles and configure the system so the application
runs on startup. To deploy an application onto the nonvolatile memory, you first need to build the VI into an executable.

Building an Executable from a VI

The LabVIEW Project provides the ability to build an executable real-time application from a VI. To build an executable
real-time application, you create a build specification under the real-time target in the LabVIEW Project Explorer. By
right-clicking on Build Specifications, you are presented with the option of creating a Real-Time Application along

with a Source Distribution, Zip File,

and so on.

F Project Explorer - cRID Embe o] (4
File Edit View Project Operate Tools Window Help
= IEEER
Items | Files |

=8 ff_g;l_ Project: cRIO Embedded Data Logger.lvproj
B B My Computer

{ 25 Dependendes

"% Buid Spedifications

RT CompactRIO Target (0.0.0.0)

& Local Chassis (cRIO-3101)

|l cRIOEmbeddedDatalogger (Host).vi

%' Dependendes

m Real-Time Application
Source Distribution
Help...)
—_— Web Service (RESTHuUI)
Zip File

Figure 8.2. Create a new real-time application build specification.

After selecting Real-Time Application, you see a dialog box featuring two main categories that are most commonly
used when building a real-time application: Information and Source Files. The Destinations, Source File Settings,
Advanced, and Additional Exclusions categories are rarely used when building real-time applications.

The Information category contains the build specification name, executable filename, and destination directory for both
the real-time target and host PC. You can change the build specification name and local destination directory to match your
nomenclature and file organization. You normally do not need to change the target filename or target destination directory.

B! My Real-Time Application Propertics

Categor:

Source Files

Advanced

Destinations
Source File Settings

Additional Exclusions
Preview

Buid specificat

me

[y Real-Time Application

Target filename

[startup.rtexe

Local destination directory

C:\Program SbVIEW I
Logger RT CompactRIO TargetiMy Real-Time Appication

RIOAPPi

Target destination drectory

(RIO Embedded Data (&

Buld specification desription

citstartup

aid | ok | cace |

b |

Figure 8.3. The Information Category in the Real-Time Application Properties

196

The Source Files category is used to set the startup VIs and include additional Vs or support files. You need to select
the top-level VI from your Project Files and set it as a Startup VI. For most applications, a single VI is chosen to be a
Startup VI. You do not need to include Ivlib or set subVIs Vls as Startup VIs or Always Included unless they are called
dynamically in your application.

B My Real-Time Application Properties. x|
=
Project Files Startup VIs -]
ElE| &, cRIOEmbeddedbataLogger (Hos.Mi
‘8
=]
=]
HwaysInduded |
=|
5]
Build ok cocel | Hep |

Figure 8.4. Source Files Category in the Real-Time Application Properties (In this example,
the cRIOEmbeddedDatalogger (Host).vi was selected to be a Startup VI.)

After all options have been entered on the required category tabs, you can click OK to save the build specification or
you can directly build the application by clicking the Build button. You can also right-click on a saved build specification
and select Build to build the application.

When you build the application, an executable is created and saved on the hard drive of your development machine
in the local destination directory.

Getting an Executable Real-Time Application to Run on Startup
After an application has been built, you can set the executable to automatically start up as soon as the controller
boots. To set an executable application to start up, you should right-click the Real-Time Application option (under
Build Specifications) and select Set as startup. VWWhen you deploy the executable to the real-time controller, the
controller is also configured to run the application automatically when you power on or reboot the real-time target.
You can select Unset as Startup to disable automatic startup.

=10l x|

File Edit View Project Operate Tools Window Help
=R X[m-e ol

Items | Files |

= @gl, Project: cRIO Embedded Data Logger. lvproj
E| B My Computer
i 1. Dependendes

%, Build Specifications

RT CompactRIO Target (0.0.0.0)

B Local Chassis (cRIO-9101)

gg cRIOEmbeddedDatalogger (Host).vi

¥ 7—2" Dependendes

E "1"‘ Build Specifications

Bl M Real T

Build

Explore

Remove from Project

Help...
Properties

Figure 8.5. Configuring a Build Specification to Run When an Application Boots

197

Deploy Executable Real-Time Application to the Nonvolatile Memory on a CompactRIO System

After configuring and building your executable, you now need to copy the executable and supporting files to the
nonvolatile memory on the CompactRIO and configure the controller so the executable runs on startup. To copy the
files and configure the controller, right-click on the Real-Time Application option and select Deploy. Behind the
scenes, LabVIEW copies the executable files onto the nonvolatile memory on the controller and modifies the ni-rt.ini
file to set the executable to run on startup. If you rebuild an application or change application properties (such as
configuring it not to run on startup), you must redeploy the real-time application for the changes to take effect on the
real-time target.

At some point, you may want to remove an executable you stored on your real-time target. The easiest way to do
this is to use FTP to access the real-time target and delete the executable file that was deployed to the target. If you
used the default settings, the file is located in the NI-RT\Startup folder with the name supplied in the target filename
box from the Information category and the extension .rtexe.

B ftp://10.0.67.99/ni-rt/startup/] 5
gi)v | foii10.0.67.28nirtjstartupf =1 & [search B

Fle Edt View Toos Help

Organize + Views - E@Z\

Name - | -| size
| startup.aliases
[E/ Decuments [Nlstartup.rtexe
[E Fictures

I3 music

Maore »

~| Date modified | -| Date aeated | -

Favorite Links

Folders A
B Desktop -
|E steven Bassett
Public
18 Computer
“E" Local Disk (C:)
(4 RECOVERY (D2)
&3 DVD RW Drive (
A Secure Digital 5t
¥ Network
(& Internet Explorer
¥ 10.0.67.99
cRIOTestl
RIOTest2

e El

startup.rtexe on 10.0.67.99

Figure 8.6. Deleting the startup.rtexe from a CompactRIO Controller

198

Deploying Applications to aTouch Panel

Configure the Connection to the Touch Panel

Although it is possible to manually copy built applications to a touch panel device, it is recommended that you use
Ethernet and allow the LabVIEW Project to automatically download the application. National Instruments touch
panels all ship with a utility called the NI TPC Service that allows the LabVIEW Project to directly download code over
Ethernet. To configure the connection right click on the touch panel target in the LabVIEW Project and select
properties. In the General category choose the connection as NI TPC Service and enter the IP address of the touch
panel. Test the connection to make sure the service is running.

i3 Touch Panel Target Properties

Category 0 |~ Gereral
G |

eneral
Candtional Disable Symbels
Mame

NI TPC Service (TCP/IP) v

Touch Panel device IF address
052,130]

Connection status

v [ok [comel |[ek |

Figure 8.7 Connect to a touch panel through Ethernet using the NI TPC Service.

You can find the IP address of the touch panel by going to command prompt on the TPC and typing ipconfig. To get
to the command prompt go to the Start menu and select Run... In the popup window enter cmd.

Deploy a LabVIEW VI onto Volatile or Nonvolatile Memory

The steps to deploy an application onto a Windows XP Embedded touch panel and onto a Windows CE touch panel
are nearly identical. The only difference is on an XP Embedded touch panel, you can deploy an application onto only
the nonvolatile memory, and, on a Windows CE touch panel, you can deploy onto volatile or nonvolatile memory,
depending on the destination directory you select. To run a deployed VI in either volatile or nonvolatile memory on a
touch panel, you must first create an executable.

Building an Executable from a VI for an XP Embedded Touch Panel

The LabVIEW Project provides the ability to build an executable Touch Panel Application from a VI. To build an
executable Touch Panel Application you create a build specification under the touch panel target in the Project
Explorer. By right-clicking on Build Specifications, you can select the option of creating a Touch Panel Application,
Source Distribution, Zip File, and so on.

199

= Project Explorer - HMI_SV.lvproj E]@

File Edit Wiew Project Operate Tools Window Help

[t S IEIEGRE

Tkems | Files

= [l Praject: HMI_S¥.lvproj

2 B My Computer
4 [0 simulated Controller
-5 Dependencies
'% Euild Specifications
= [MITPC-2512 Device
+@ TRC
+ "5 Dependencies
S T

: Mew 3 Touch Panel Application (EXE)
y Source Distributior&
B MITPC Build Al -
Zip File
Expand Al
Collapse all
Help...

Figure 8.8. Create a touch panel application using the LabVIEW Project.

After selecting the Touch Panel Application, you are presented with a dialog box. The two main most commonly
used categories when building a touch panel application are Information and Source Files. The other categories are
rarely changed when building touch panel applications.

The Information category contains the build specification name, executable flename, and destination directory for
both the touch panel target and host PC. You can change the build specification name and local destination directory
to match your nomenclature and file organization. You normally do not need to change the target filename or target
destination directory.

kD] My ApplicationZ Properties

leten | Inforration

Information

Source Files

Dentatione Buld specication riame

Source File Settings My Applcationz

Tcon

Advanced Target filename

Addltional Exclusians applcation.exs

ersion Infarmation

Run-Time Languages Local destination diractary

B

reviem CiiDocuments and Settings|twalteriDesktop|Examples - Shared Yariable Communication - ARYser InterfaceiHMI

Control Primer(2009) with S¥stbuildsiHMI_SVAN TPC-2512 Device\My Application2

Target destination directory

ci
1

Build specfication deseription

[eue J[ok J[cencel][hHep |

Figure 8.9. The Information Category in the Touch Panel Application Properties

The Source Files category is used to set the startup VIs and include additional Vis or support files. You need to select
the top-level VI from your Project Files and set it as a Startup VI. For most applications, a single VI is chosen to be a
Startup VI. You do not need to include Ivlib or set subVIs Vls as Startup VIs or Always Included unless they are called
dynamically in your application.

200

k| My Application2 Properties
Cobegory Source Files
Information
Solirce Fies -
Destinations Froject Files Startup Vs ~
Source File Settings = md, HT_SY i
Icon =@ TP
Advanced #(3 Subvis
Additional Exclusions =
Version Information = ()
Run-Time Languages @
Preview =
v
Always Included ™
=]
(=]
»
e [o [cawel |[He |

Figure 8.10. Source Files Category in the Touch Panel Application Properties
(In this example, the HMI_SV.vi was selected to be a Startup V).

After all options have been entered on the required category tabs, you can click OK to save the build specification or
you can directly build the application by clicking the Build button. You can also right-click on a saved build specification
and select Build to build the application.

When you build the application, an executable is created and saved on the hard drive of your development machine
in the local destination directory.

Building an Executable from a VI for a Windows CE Touch Panel

The LabVIEW Project provides the ability to build an executable touch panel application from a VI. To build this
application, you create a build specification under the touch panel target in the LabVIEW Project Explorer. By right-
clicking on Build Specifications, you can select the option of creating a Touch Panel Application, Source Distribution,
Zip File, and so on.

i3 Project Explorer - HMI_SV . lvproj E]@
File Edit Wiew Project Operate Tools Swindow Help
losal IEENEAEE

Ttems | Files

= @g Project: HMI_SW.lvproj
= B My Computer
+- (@ simulated Controller
-'q" Dependencies
"-&_ Build Specifications
w [MITPC-2512 Device
= [WITPC-2012 Device

(@ TRC
+ _4-5_" Dependencies
= Bui Mew » Touch Panel Application (EXE)
(= . ource Distribution
Build All -
Zip Filz
Expand All
Collapse All
Help...

Figure 8.11. Creating a Touch Panel Application Using the LabVIEW Project

After selecting Touch Panel Application, you see a dialog box with the three main categories that are most commonly
used when building a touch panel application for a Windows CE target: Application Information, Source Files, and
Machine Aliases. The other categories are rarely changed when building Windows CE touch panel applications.

The Application Information category contains the build specification name, executable filename, and destination
directory for both the touch panel target and host PC. You can change the build specification name and local

201

destination directory to match your nomenclature and file organization. You normally do not need to change the
target filename. The target destination determines if the deployed executable runs in volatile or nonvolatile memory.
On a Windows CE device

= \My Documents folder is volatile memory. If you deploy the executable to this memory location, it does not
persist through power cycles.

= \HardDisk is nonvolatile memory. If you want your application to remain on the Windows CE device after a
power cycle, you should set your “remote path for target application” to a directory on the \HardDisk such as \
HardDisk\Documents and Settings

43 HMI_SV Touch Panel Build Specification Properties

(Category) Application Information
Epplication [nformation !

Device Information
Source Files

Source File Settings HMHI_SY
Machine Aliases
Generated Files

Build specification name

Target filename

HMI_SV exe Same as bap-level VI
Destination directory

C:\Documents and Settings)twalter|Desktop|Examples - Shared Variable

Communication - A#{User InterfacelHMI Control Primer(2009) with Svsibuildsy
HMI_SYHMI_Sv

Remote path for target application

[irly Document:s]

[] Generate serial anly [] Expression Folding
[Enable debugging

Front panel scale Fackor Allocate constants

1 First Lise v
Screen depth Deallocate constants

) " Out of Scape -

o) [comer) (s

Figure 8.12. The Information Category in the Touch Panel Application Properties

The Source Files category is used to set the startup VI and include additional VIs or support files. You need to select
the top-level VI from your Project File. The top-level VI is the startup VI. For Windows CE touch panel applications, you
can select only a single VI to be the top-level VI. You do not need to include Ivlib or subVls as Always Included.

& x
S
Category Source Fles

‘Application Information
Device Information

Source Files 3 | Project Files =

Source File Settings = m NI TPC-2012 Device o Tun—IEIVE\ L
Machine Alissss =i TPC W], HIAL_ S
Generated Files #[E Subvis
i el
Additional files (*.c, *.cpp, *.lib, *.obj) A
-
< »
Always included %, vi) ~
v v
< > < >
[oc J[cacel |[Hep |

Figure 8.13. Source Files Category in the Touch Panel Application Properties
(In this example, the HMI_SV.vi was selected to be the top-level VI.)

202

The Machine Aliases category is used to deploy an alias file. This is required if you are using network-published
shared variables for communication to any devices. Be sure to check the “Deploy alias file” check box. The alias list
should include your network-published shared variable servers and their IP addresses (normally CompactRIO or
Windows PCs). More details on alias files and deploying applications using network-published shared variables are
covered in the deployment section of this document.

&3 HMI_SY Touch Panel Build Specification Properties

Category | Machine Aliases

Application Infarmation

Dievice Information

Source Files Mame: Address ~
Source File Settings My Computer i 10.0,59.159

Machine &izses oo | by

Generated Files

Deploy aliases file

l o]][Cancel H Help]

Figure 8.14. The Machine Aliases Category in the Touch Panel Application Properties
(Be sure to check the deploy aliases file check box if using network-published shared variables.)

After all options have been entered on the required category tabs, you can click OK to save the build specification or
you can directly build the application by clicking the Build button. You can also right-click on a saved build specification
and select Build to build the application.

When you build the application, an executable is created and saved on the hard drive of your development machine
in the local destination directory.

Deploy an Executable Touch Panel Application to a Windows CE or XP Embedded Target
After configuring and building your executable you now need to copy the executable and supporting files to the
memory on the touch panel. To copy the files, right-click on the Touch Panel Application and select Deploy. Behind the
scenes, LabVIEW copies the executable files onto the memory on the touch panel. If you rebuild an application you
must redeploy the touch panel application for the changes to take effect on the touch panel target.

The Run Button
If you click the run button on a VI targeted to a touch panel target, LabVIEW guides you through creating a build
specification (if one does not exist) and deploys the code to the touch panel target.

Setting an Executable Touch Panel Application to Run on Startup

After you have deployed an application to the touch panel, you can set the executable so it automatically starts up as
soon as the touch panel boots. Because you are running on a Windows system, you do this using standard Windows
tools. In Windows XP Embedded, you should copy the executable and paste a shortcut into the Startup directory on

the Start Menu. On Windows CE, you need to go to the STARTUP directory on the hard disk and modify the startup.
ini file to list the path to the file \HardDisk\Documents and Settings\HMI_SV.exe). You can alternatively use the Misc

tab in the Configuration Utility (Start»Programs»Utilities» Configuration Utilities) to configure a program to startup
on boot. This utility modifies the startup.ini file for you.

203

Deploying Applications that Use Network-Published Shared Variables

Network Shared Variable Background
The term network shared variable refers to a software item that exists on the network and can communicate
between programs, applications, remote computers, and hardware.

There are three pieces that make the network variable work in LabVIEW.

Network Variable Nodes

A network variable node is the block diagram representation for network reads and writes. Each variable node references
a software item on the network (the actual network variable) hosted by the Shared Variable Engine. Figure 8.15 shows
a network variable node, its actual network path, and its respective item in the project tree.

5- [, CompactRIO (10.0.62.67)
=@ cRIO
\\CompactRIO\ Communications Library\setpoint H =% L} Communications Library.vlib

ik setpoint
error in (no error) ey | = n

Figure 8.15. Network Variable Node and Its Network Path

Shared Variable Engine

The Shared Variable Engine is a software component that publishes data over Ethernet. The engine must run on real-time
targets or Windows PCs where network shared variables are hosted. On Windows, the Shared Variable Engine is a
service launched at system startup. On a real-time target, it is a driver that loads when the system boots.

When the shared variable engine starts it reads data stored on the nonvolatile memory to determine what variables
it should publish on the network.

Publish-Subscribe Protocol (PSP)
The Shared Variable Engine uses the NI Publish-Subscribe Protocol (NI-PSP) to communicate data. The NI-PSP is a
networking protocol built using TCP where each shared variable client subscribes to data hosted by a Shared Variable Engine.

Deploy Shared Variable Libraries to aTarget That Hosts Variables

A CompactRIO system starts the Shared Variable Engine when it boots, and the engine accesses the nonvolatile
memory to determine what if any libraries it needs to deploy. Shared variable libraries are automatically deployed
when you run a VI that accesses any of the variables and when you deploy an application that accesses any of the
variables. However, it is possible that no libraries have ever been deployed to the system. If this is the case, the
engine does not make any variables available on the network.

You can choose from two methods to explicitly deploy a shared variable library to a target device.

1. You can target the CompactRIO system in the LabVIEW Project, place the library below the device, and deploy
the library. This writes information to the nonvolatile memory on the CompactRIO controller and causes the
variable engine to create new data items on the network.

204

tb Project Explorer - Basic Comm Example... E]@

File Edit View Project Operate Tools ‘Window Help

e s b x| Ew E-E

Items | Files

= IT_ggl, Project: Basic Comm Example. lvproj

= B My Computer

-fq" Dependencies

%, Build Specifications

[}, CompactRIC (192,168.1,123)
[

: [ﬁ? Memory and Cormm Table Data
= Communicatic

Mew »

®, P03
®3 stop Open
I_; IC Library. W] Explore...
N I_; Memory Tably Shaw in Files Yiew Chrl+E
1 Top Level.vi
= Top Add ’

+- Chassis (cRIC-9074
+ _-!q_" Dependencies Find Project Ttems. ..
L% Build Specifications

= Save »
Find »

Show Errar Window

Deploy
Deploy
Undeploy

J/ Autodeploy Variables
Multiple ¥ariable Editor...
Crrate Yariahles.

Figure 8.16. Deploy libraries to real-time targets by selecting Deploy from the right-click menu.
2. You can programmiatically deploy the library from a LabVIEW application running on Windows using the
Application invoke node.

= On the block diagram, right click to bring up the programming palette and go to Programming » Application
Control and place the Invoke Node on the block diagram

= Using the hand tool, click on Method and select Library » Deploy Library

5 g p'pp ﬁ
Library Path Library,Deploy Library
e —._ Lib Path

Target IF‘.ﬁ.ddressI v Target IPAddress
IE ¢

Figure 8.17 You can programmatically deploy libraries to real-time targets using the application invoke node on a PC.

= Use the Path input of the Deploy Library invoke node to point to the library(s) containing your shared
variables. Also specify the IP address of the real-time target using the Target IP Address input.

205

Undeploy a Network Shared Variable Library
Once a library is deployed to a Shared Variable Engine, those settings persist until you manually undeploy them.
To undeploy a library:

1. Launch the NI Distributed System Manager (From LabVIEW»Tools or from the Start Menu)
2. Add the real-time system to “My Systems” (Actions»Add System to My Systems)

3. Right-click on the library you wish to undeploy and select Remove Process

Deploy ApplicationsThat Are Shared Variable Clients
Running an executable that is only a shared variable client (not a host) does not require any special deployment steps

to deploy libraries. However the controller does need a way to translate the name of the system that is hosting the
variable into the IP address of the system that is hosting the variable.

= [k CompactRIO (10.0.62.67)
= [cRrIO
{ &3 Communications Library.lvlib
#5 setpoint
!,".' Stop

\\CompactRIO\ Communications Library\setpoint

ik setpoint
error in (no error) ey | = n

Figure 8.18. Network Variable Node and Its Network Path

To provide scalability this information is not hard-coded into the executable. Instead this information is stored in a file
on the target called an alias file. An alias file is a human readable file that lists the logical name of a target
(CompactRIO) and the IP address for the target (10.0.62.67). When the executable runs it reads the alias file and
replaces the logical name with the IP address. If you later change the IP addresses of deployed systems you only
need to edit the alias file to relink the two devices. For real-time and Windows XP Embedded targets, the build

specification for each system deployment automatically downloads the alias file. For Windows CE targets, you need
to configure the build specification to download the alias file.

Basic Comm Example.aliases - WordPad

File Edit Wiew Insert Formab Help

DEE SR & ® B

|l CompactRIO]

CowpactRIO = "10,0.59.171"

[Expansion CowpactRIO Target]

Expansion CompactRIO Target = "0.0.0.0%
[My Computer]

My Computer = "10.0.32.134"

Figure 8.19. The Alias file is a human-readable file that lists the target name and IP address.

206

If you are deploying systems that have dynamic IP addresses using DHCP you can use the DNS name instead of the IP
address. In the LabVIEW Project, you can type the DNS name instead of the IP address in the properties page of the target.

43 Real-Time CompactRIO Properties
Cotegory 0 [~ General
General
Conditional Disabls Symbols
Y1 Server: Configuration Name
Y1 Server: Machine fccess Tw-tRIO
VI Server: Exparted Vis
Web Server: Configuration 1P Address | DNS Name
Web Server: Visible ¥1s Tw-tRIO
Web Server: Browser fccess
User Access
Host Enwvironiment
Miseellanaous
Web Services: Security
Scan Engine
v [ok [cancel J[heb |

Figure 8.20. For systems using DHCF you can enter the DNS name instead of the IP address.

One good approach if you need scalability is to develop using a generic target machine (you can develop for remote
machines that don't exist) with a name indicating its purpose in the application. Then as part of the installer, you can
run an executable which either prompts the user for the IP addresses for the remote machine and “My Computer”
or pulls them from another source such as a database. Then the executable can modify the aliases file to reflect
these changes.

207

Recommended Software Stacks for CompactRIO

National Instruments also provides several sets of commonly used driver sets called Recommended software sets.
Recommended software sets can be installed onto CompactRIO controllers from Measurement and Automation Explorer.

¥, Software - Measurement & Automation Explorer

File Edit ‘iew Tools

Help

=1ol]

Configuration | | 7 AddRemove Software

| <2 Shaw Help

=] @ My System

& software
E@ Remote Systems
= [crio-2022

& software

ﬁ’ Devices and Interfaces

ﬁ’ Devices and Interfaces

Software

B

What is Software?

LabVIEW Real-Time target.

Software displays the National Instruments software components installed on a

Recommended software sets guarantee that an application has the same set of underlying drivers for every real-time
system that has the same software set. In general, there is a minimal and full software set.

LabVIEW Real-Time Software Wizard |
Software Selection
Select the recommended software set you want to install to the target. National Instruments |NN§|'I?.|'=HAELNTS
recommends the following software sets for your target.
LabVIEW Real-Time 8.6. 1 | | Click Next to install the following recommended software set ecific
MI-RIO 3.1.0 (minimal) - January 2009 (current to the target:
MI-RIO 3.1.0 - January 2009 hu or
83 MI-RIO 3.1.0 with NI Scan Engine support - Jar MI-RIO 3. 1.0 - January 2009 S
gm. Custom software installation S I
H : DataSocket for LabVIEW Real-Time 4.5.5
L% Uninstall all softw
X ninstal al software LabVIEW PID Cantrol Toalkit 8.6.1 —
LabVIEW Real-Time 8.6.1
Modbus 1f0 Server 1.5.1
MNI-RIO 3.1.0
MI-Serial RT 3.3.3
MNI-VISA 4.4
N e G a1 =]
T omap ¥
b of o> 7
]
=l
v
Update BIOS... | << Back | Mext => | Cancel I Help |

Figure 8.21. Recommended software sets Being Installed on a CompactRIO Controller

208

System Replication

// LabVIEW Example Code
(Example) is provided for this section

After you have deployed a LabVIEW Real-Time application to a CompactRIO controller, you may want to deploy that
image to other identical real-time targets. You can use the LabVIEW Project and the LabVIEW Application Builder to
redeploy an already built application with the procedure described above. This method of replication becomes
cumbersome when attempting to replicate and deploy more than a few systems.

To help speed deployments, National Instruments provides a set of system replication Vls for the replication of
LabVIEW Real-Time targets. You can use these tools to copy the contents of a LabVIEW Real-Time controller hard
drive and then replicate the information onto multiple controllers. You also can use these tools to programmatically
identify systems on the network and configure network settings. This eliminates the use of Measurement &
Automation Explorer (MAX) and an FTP client.

Real-Time Replication Utility Vis
Starting in LabVIEW 2009, eight Vls are installed with LabVIEW Real-Time for system replication.

I
TR]

v
) =

LEx | 1

RT Restart T... RT Get Targe BT Apply Tar..,

ENOT

RT Format Ta... RT Lock Targ... AT Unlock Tar,..

]
o a3
BT |

RT Create Ta... RT Apply Tar...

Figure 8.22. With RT Utility Vis, you can achieve
programmatic controller configuration and imaging.

209

ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/rt_application_deployment.zip
ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/rt_application_deployment.zip

Target Information (All) ""l

With the RT Get Target Information VI, you can search the network for real-time devices. It can find devices by IP address
and MAC address, or it can find all NI real-time devices located on the same subnet.

Once the RT GetTarget Information VI locates a programmed target on the network, the RT Create Target Disk Image
connects to the target and transfers all the contents via FTP to your Windows computer. These contents are stored
on your local machine in a zip file. The process of copying all the information from the controller takes a few minutes.

_ i
- <3,

|Appl~; Network Settings (Static) 'I]

You can configure new controllers using the RT Apply Network Settings and the RT Apply Target Disk Image VlIs. The
first VI sets the network settings on the target and the second takes a previously stored disk image and downloads
the contents to the new real-time controller. The process of copying a disk image to the controller takes a few
minutes.

Vls also can help you lock and unlock the FTP server on the real-time controller using a password.

210

Building a Replication Utility
With these Vls, you can build your own custom replication utility in LabVIEW running on a Windows machine.

A prebuilt replication example using these Vls is included in this guide. When you run the application from the desktop,
it provides a graphical user interface for replicating and managing controllers and images.

B Project [xplorer - BT Apphicatien = :-!_m
fe L Yew Bomt Cpeste lsch Wrdoe fep
ToH@ Do

Rems | ey
T e——

N My Compuier
B ®1 Agpkcston Cegloyment Ltity
v B promat
» D bW ln
B wopeages
w BT dgploation Depioywent UbEy
& mad i i
* [s
* '.'.'_. Bt e b

B 01 bppis s Dt st = &

P Tegen age g

Real-Time Targets i Application Images AR el

e] e i | i g b - ey - ET

Figure 8.23. You can create sophisticated replication programs such as this example replication application.

This example application automatically scans the network for real-time targets and can scan the target directory for
stored application images. You can retrieve target disk images and store them on the Windows machine and deploy
application images to targets. The process of deploying or retrieving disk images takes a few minutes. You can find
more information on using this example in the readme.doc file included in the LabVIEW Project.

NI-RIO System ReplicationTools

NI-RIO System Replication Tools offer additional support to Real-Time Replication Tools by providing a LabVIEW API with
functionality to programmatically download the FPGA bitfile to flash memory on the backplane. This is useful if you have a
deployed application where the FPGA code needs to start running immediately and cannot be loaded in the standard way
from the real-time code. With these tools, you can erase and download an FPGA bitfile to flash memory and set how a VI
is loaded from flash memory. NI-RIO System Replication Tools require NI-RIO to be installed on the host PC using the Vls.

¢

Set RIO Device Settings.vi
Use Set RIO Device Settings to configure when the bitfile loads from flash memory.

™
Download Bitfile.vi

This VI downloads a specific bitfile to one or more FPGA targets or erases the existing bitfile. The input is an IP address
of a host machine, the FPGA target resource (RIO0), the path to the bitfile, and the operation to perform (download
or erase the bitfile).

211

IP Protection

Intellectual property (IP) in this context refers to any unique software or application algorithm(s) that you or your
company has independently developed. This can be a specific control algorithm or a full scale deployed application. IP
normally takes a lot of time to develop and provides companies with a way to differentiate from competition.
Therefore, protecting this software IP is very important. LabVIEW development tools and CompactRIO provide you
the ability to protect and lock your IP In general there are two levels of IP protection you can implement:

Lock Algorithms or Code to Prevent IP from Being Copied or Modified

If you have created algorithms for specific functionality, such as performing advanced control functions,
implementing custom filtering, and so on, you may want to be able to distribute the algorithm as a subVI but prevent
someone from viewing or modifying that actual algorithm. This may be for IP protection or it may be to reduce a
support burden by preventing other parties from modifying and breaking your algorithms.

Lock Code to Specific Hardware to Prevent IP from Being Replicated
If you want to ensure that a competitor can't replicate your system by running your code on another CompactRIO
system or may want your customers to come back to you for service and support.

Locking Algorithms or Code to Prevent Copying or Modification

Protect Deployed Code

LabVIEW is designed to protect all deployed code and all code running as a start-up application on a CompactRIO
controller is by default locked and cannot be opened. Unlike other off-the-shelf controllers or some PLCs where the
raw source code is stored on the controller and only protected by a password, CompactRIO systems do not require
the raw source code to be stored on the controller.

Code running on the real-time processor is compiled into an executable and cannot be “decompiled” back to
LabVIEW code. Likewise, code running on the FPGA has been compiled into a bit file and cannot be "decompiled”
back to LabVIEW code. To aid in future debugging and maintenance it is possible to store the LabVIEW project on
the controller or to call raw Vls from running code, but by default any code deployed to a real-time controller is
protected to prevent copying or modifying the algorithms.

Protect Individual Vs

Sometimes you want to provide the raw LabVIEW code to enable end customers to perform customization or
maintenance but still want to protect specific algorithms. LabVIEW provides a few mechanisms to provide usable
subVls while still protecting the IP in those Vls.

Method 1. Password Protecting Your LabVIEW Code

Password protecting a VI adds functionality that requires users to enter a password if they want to edit or view the
block diagram of a particular VI. Because of this, you can give a VI to someone else and protect your source code.
Password protecting a LabVIEW subVI prohibits others from editing the VI or viewing its block diagram without the
password. However, if the password is lost, there is no way you can unlock a VI. Therefore, you should strongly
consider keeping a backup of your files stored without passwords in another secure location.

To password protect a VI, go to File»VI Properties. Choose Protection for the category. This gives you three options:
unlocked (the default state of a V), locked (no password), and password-protected. VWhen you click on password-protected,
a window appears for you to enter your password. The password takes effect the next time you launch LabVIEW.

212

Category Protection -

{3 Enter Password

Enter New Password:

EEEEeEE

() Unilocked (no password)
Any user can view and edit ©

() Locked (o password)
A user must unlock this VI (frl gy Mew Password Again to Verify: | diagram.
L
(%) Password-protected

A user canmot edit this V1 nol peword
ok | [cace |
Note: Changing a ¥l password deletes
the: undo history o you cannot undo e e
the password change, _Ji. Cancel || Mep

Figure 8.24. Password Protecting LabVIEW Code

The LabVIEW password mechanism is quite difficult to defeat, but no password algorithm is 100% secure from
attack. If you need total assurance that someone cannot gain access to your source code, you should consider
removing the block diagrams.

Method 2. Removing the Block Diagram

To guarantee that a VI cannot be modified or opened you can remove the block diagram completely. Much like an
executable, the code you distributed no longer contains the original editable code. Don't forget to make a backup of
your files if you use this technique, as the block diagrams cannot be recreated. Removing the block diagram is an
option you can select when creating a source distribution. A source distribution is a collection of files that you can
package and send to other developers to use in LabVIEW. You can configure settings for specified Vls to add
passwords, remove block diagrams, or apply other settings.

Complete the following steps to build a source distribution.

1. In the LabVIEW Project right-click Build Specifications and select New»Source Distribution from the shortcut
menu to display the Source Distribution Properties dialog box. Add your VI(s) to the distribution.

2. On the Source File Settings page of the Source Distribution Properties dialog box, remove the checkmark
from the Use default save settings checkbox and place a checkmark in the Remove block diagram checkbox to
ensure that LabVIEW removes the block diagram.

3. Build the source distribution to create a copy of the VI without its block diagram.

213

3 My Source Distribution Properties

Categon Source File Settings
Information
Source Files
Destinations s
Source File Settings: e Always Included
Additional Exclusions =), Untitled 2.vi

Preview = Dependencies

Project Files || Inclusion Type

Destination
Destination Direckary hd

[Customize VI Properties. ..

[use defaulk save settings
[Cremave front panel
Remove block diagram

(%) No passward change
() Remave password
() Apply new password

[Irename this file in the: build

Untitled 2.vi

[Build] [QK] [Cancel I [Help

Figure 8.25. Removing the Block Diagram from LabVIEW Vis

CAUTION: If you save Vis without block diagrams, do not overwrite the original versions of the Vlis. Save the
Vis in different directories or use different names.

Lock Code to Hardware to Prevent IP Replication

Some OEMs and machine builders also want to protect their IP by locking the deployed code to a specific system. To

make system replication easy, by default the deployed code on a CompactRIO controller is not locked to hardware
and can be easily moved and executed on another controller. For designers who want to prevent customers or
competitors from replicating their systems, one effective way to protect application code with CompactRIO is by
locking your code to specific pieces of hardware in your system. This ensures that customers cannot take the code
off of a system they have purchased from you and run the application on a different set of CompactRIO hardware.
You can lock the application code to a variety of hardware components in a CompactRIO system including:

The MAC address of a real-time controller

The serial number of a real-time controller

The serial number of the CompactRIO backplane
The serial number of individual modules

Third-party serial dongle

The following steps can be used as guidelines to programmatically lock any application to any of the above
mentioned hardware parameters and thus prevent users from replicating application code:

1.

Performing these steps ensures that the application is not replicated or usable on any other piece of CompactRIO hardware.

Obtain the hardware information for the device. Refer to the procedures below for more information on
programmatically obtaining this information.

Compare the values obtained to a predetermined set of values that the application code is designed for using
the Equal? function from the Comparison palette.

Wire the results of the comparison to the selector input of a Case Structure.

Place the application code in the true case and leave the false case blank.

214

License Key

When deploying many systems hard coding the hardware identification may not be ideal as it requires a manual
change to the source code and recompile for each system deployed. This problem can be addressed by using a
license key file which is stored separate from the application code on the CompactRIO controller. The license key file
can be easily updated for each system without needing to change the application. In addition to reading the MAC or
serial number the VI can open the license file and verify that the license is valid. For security, the license file should
be specific for each deployed system and your code should perform a mathematical operation between the license
key and hardware specific features such as the MAC address. Because you can find the MAC and serial numbers
programmatically on Windows and real-time OSs, you can develop a LabVIEW application for system deployment
that automatically queries the CompactRIO system and generates and deploys the appropriate license key file.

Acquire the MAC Address of Your CompactRIO System

(G LabVIEW Example Code
e is provided for this section

You can acquire the MAC address of real-time controllers manually from MAX on the network settings tab of the
controller or from the Windows command line. You can also find the MAC address programmatically.

Acquiring the MAC Address from Windows
To programmatically find the MAC address of a real-time system from Windows, perform the following steps:

1. Run the RT Ping Controllers VI found in the Real-Time»Real-Time Utilities palette. This VI returns the network
information of all real-time controllers on the subnet.

Contraollers on Subnet
X b et
i3

Controllers on Subnet

status

[Runns‘ng
model

ICRIO'%TH

Figure 8.26. Obtain MAC address of networked real-time targets from Windows.
2. Search in the data that the RT Ping Controllers VI returned to find the appropriate real-time controller by using
either the IP Address or Hostname.

3. This cluster returns the controllers’ MAC addresses. The MAC addresses returned by the RT Ping Controllers VI
are an array of strings in hexadecimal format.

Acquiring the MAC Address from the Real-Time Target
To find the MAC address programmatically from a real-time controller, perform the following steps:

1. Run the RT Ping Controllers VI found in the Real-Time»Real-Time Utilities palette while targeted to a real-
time controller. Wire into the system location input a constant cluster with False and local host entries. This
returns the information for the real-time controller where the code is executing.

215

ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/compactrio_information_retrieval_tools.zip
ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/compactrio_information_retrieval_tools.zip

Controllers on Subnet

o W Controllers on Subnet
e

status

Figure 8.27 Obtain the MAC address on a real-time target.

2. Search in the data that the RT Ping Controllers VI returned for the controllers’ MAC addresses. The MAC
addresses returned by the RT Ping Controllers VI are an array of strings returned in a hexadecimal format.

CompactRIO Information Retrieval Tools
You can also get other information about CompactRIO system such as serial numbers using the CompactRIO
Information Retrieval Tools. These free Vis can be run under Window or on the real-time controller to retrieve

information about a local or remote CompactRIO controller, backplane, and modules including the type and serial
number of each of these system components.

i1 I C%Search l o iew ™ |

CRI Get cRIO System Info.,vi

Gek Chrl| |Get Bepl |GetMod
Info Info Infe
= '_| O- E '
Wt
Infa o 1
GetMod | (GekMod| (Get Mod | Gt Mod [(SekMod | [GetMod
L0 | 02 03 3104 a0Ta 3074

Figure 8.28. The CompactRIO Information Retrieval Tools
return information such as serial numbers.

If you are using the LabVIEW Real-Time System Replication Tools, these also programmatically retrieve the real-time
target's serial number.

RT IP Address

Abec |

Get Target Info (TP, vi
'3:'3]') Serial Murnber
L [Serial Mumber TS|

Figure 8.29. Obtain Serial Number Using Real-Time System Replication Tools

216

Porting to Other Platforms

This document has focused on architectures for building embedded control systems using CompactRIO systems. The
same basic technigues and structures also work on other National Instruments control platforms including PXI and NI
Single-Board RIO. Because of this, you can reuse your algorithms and your architecture for other projects that require
different hardware or easily move your application between platforms. However, CompactRIO has several features to
ease learning and speed development that are not available on all targets. This section covers the topics you need to
consider when moving between platforms and shows you how to port an application to NI Single-Board RIO.

NI CompactRIO

LabVIEW

NI Single-Board

Figure 8.30. Using LabVIEW, you can use the same architecture for applications ranging
from CompactRIO to high-performance PX| to board-level NI Single-Board RIO.

LabVIEW Code Portability

LabVIEW is a cross-platform progralmming language capable of compiling for multiple processor architectures and
operating systems. In most cases, algorithms written in LabVIEW are portable between all LabVIEW targets. In fact
you can even take LabVIEW code and compile it for any arbitrary 32 bit processor allowing you to port your LabVIEW
code to custom hardware. When porting code between platforms, the most commonly needed changes are related
to the physical I/O changes of the hardware.

When porting code between CompactRIO targets, all I/O is directly compatible because C Series modules are
supported on all CompactRIO targets. If you need to port an application to NI Single-Board RIO, all C Series modules
are supported, but depending on your application, you may need to adjust the software I/O interface.

NI Single-Board RIO

The NI Single-Board RIO is a board-only version of CompactRIO designed for applications where a bare board form
factor is required. While it is physically a different design, it uses the processor and FPGA and accepts up to three C
Series modules. NI Single-Board RIO differs from CompactRIO because it includes 1/O built directly onto the board.
NI Single-Board RIO features 110 3.3V bidirectional digital 1/O lines, and up to 32 analog inputs, 4 analog outputs, and
32 24V digital input and output lines, depending on the model used.

LabVIEW FPGA Programming

NI Single-Board RIO does not currently support scan mode. Instead of using the scan mode to read I/O you need to
write a LabVIEW program to read the 1/O from the FPGA and insert it into a memory table. This section examines an
effective FPGA architecture for single-point I/O communication similar to scan mode later in this section and shows

how to covert an application using scan mode.

217

Built-In I/O and I/0 Modules

Depending on the I/O requirements of your application, you may be able to create your entire application to use only
the NI Single-Board RIO onboard 1/O, or you may need to add modules. \When possible, design your application to
use the I/O modules available onboard NI Single-Board RIO. The I/O available on NI Single-Board RIO and the module
equivalents are listed below:

= 110 general purpose, 3.3V (5 V tolerant, TTL compatible) digital I/O (no module equivalent)
= 32 single-ended/16 differential channels, 16-bit analog input, 250 kS/s aggregate (NI 9205)
= 4-channel, 16-bit analog output, 100 kS/s simultaneous (NI 9263)

= 32-channel, 24V sinking digital input (NI 9425)

= 32 channel, 24V sourcing digital output (NI 9476)

NI Single-Board RIO accepts up to three additional C Series modules. Applications that need more than three
additional I/O modules are not good candidates for NI Single-Board RIO, and you should consider CompactRIO
integrated systems as a deployment target.

FPGA Size

The largest FPGA available on NI Single-Board RIO is the Xilinx 2M system gate Spartan-3 FPGA. CompactRIO
targets offer versions using both the Spartan-3 FPGAs and larger, faster Virtex-5 FPGAs. To test if code fits on
hardware you do not own, you can add a target to your LabVIEW project and, as you develop your FPGA application,
you can periodically benchmark the application by compiling the FPGA code for a simulated RIO target. This gives
you a good understanding of how much of your FPGA application will fit on the Spartan-3 FPGA.

Port CompactRIO Applications to NI Single-Board RIO or R Series Devices
There are four main steps to port a CompactRIO application to NI Single-Board RIO or PXI/PCI R Series FPGA I/O devices.

1. Build an NI Single-Board RIO or R Series project with equivalent I/O channels

2. If using CompactRIO Scan Mode, build a LabVIEW FPGA-based scan API
a. Build LabVIEW FPGA 1/O scan (analog in, analog out, digital I/O, specialty digital 1/O)
b. Convert I/O variable aliases to single-process shared variables with real-time FIFO enabled
c. Build a real-time |/O scan with scaling and shared variable-based current value table

3. Compile LabVIEW FPGA VI for new target
4. Test and validate updated real-time and FPGA code

The first step in porting an application from CompactRIO to NI Single-Board RIO or R Series FPGA device is finding
the equivalent I/O types on your target platform. For I/O that cannot be ported to the onboard I/O built into NI Single-
Board RIO or R Series targets, you can add C Series modules. All C Series modules for CompactRIO are compatible
with both NI Single-Board RIO and R Series. You must use the NI 9151 R Series expansion chassis to add C Series
I/O to an R Series data acquisition (DAQ) device.

Step 2 is necessary only if the application being ported was originally written using scan mode. If you need to
replace the scan mode portion of an application with an I/O method supported on NI Single-Board RIO and R Series,
an example is included below to guide you through the process.

If the application you are migrating to NI Single-Board RIO did not use scan mode, the porting process is nearly
complete. Skip step 2 and add your real-time and FPGA source code to your new NI Single-Board RIO project,
recompile the FPGA VI, and you are now ready to run and verify application functionality. Because CompactRIO and
NI Single-Board RIO are both based upon the RIO architecture and reusable modular C Series 1/0 modules, porting
applications between these two targets is very simple.

218

mpmject Explorer - PID Exampl E]@ aproject Explorer - Untitled Pr E]@

Elle Edit Yiew Project Operate Iools ‘Window Help

IR [Swi@E-e .

Elle Edit Wiew Project Operate Tools ‘Window Help

el [Swi@- o]

Items | Files

Ttems | Files

= E; Project: PID Example. kepraj

+- 22 Dependencies
"% Buld Spedfications

= EQ Project: Untitled Project 3

4 B] My Computer New Target # B My Computer
- [y COMPrtRIO (192,165, 1,123) se—— < [, T Single-Board RIO (0.0.0.0)
= [I NI Single-Board RIO = 8] FPGA Target (sbRIO-9642)
[Communications Library It 4- [Onboard If0
e [10 Lbrary i +) Moda
- |ml TopLevelwi [ModB
= @ Chassis (cRIC-0074) Thermocouple * O modc
=) Mod1 (slet 1, NI 9211) Input + () Modp
o fl} Modz (Siat 2, NI 9474) \ w [Modl

in B 40 MHz Onboard Clack
=l Modt (Slet 1, MIg211)

24V
Digital Output

-
i) Moda (N1 9208)
- il Mode (M1 9263)
\ L fil) Modc (N1 9425)
- il ModD (N1 9476)
3. 25 Dependencies
L "%, Buid Specifications
-2 Dependencies
"% Buid Spedfications

Figure 8.31. The first step in porting an application from CompactRIO
to an alternate target is finding replacement I/O on the future target.

Example of Porting a CompactRIO Scan Mode-Based Application to NI Single-Board RIO

/./ LabVIEW Example Code
(Exampi) is provided for this section

If you used scan mode in your original application, you need to create a simplified FPGA version of the scan mode
because NI Single-Board RIO and R Series DAQ devices do not support scan mode. Building a scan engine in FPGA
is very similar to the method for inserting single-point data from FPGA into the real-time scan discussed in the
“Programming with LabVIEW FPGA" section. There are three steps to replace scan mode with a similar FPGA-based
scan engine and current value table:

1. Build a LabVIEW FPGA I/O scan engine
2. Replace I0Vs with single-process shared variables
3. Insert FPGA data into the shared variable based current value table in LabVIEW Real-Time

First, create a LabVIEW FPGA VI that samples and updates all analog input and output channels at the rate specified
in your scan engine configuration. You can use IP blocks to recreate specialty digital functionality such as counters,
PWM, and quadrature encoder.

219

ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/ch8_portingbetweentargets_crioandsbrio.zip
ftp://ftp.ni.com/evaluation/crio/compactrio_developers_guide/ch8_portingbetweentargets_crioandsbrio.zip

I FPGA Scan Loop

D000 OOOOO0NOO00000 0000000000000 0000000000000 0000000

[t on Scan Request from RT Update Outputs [Pequire Lakest Inputs Faset Triager
PWM O PWM Olocal
Thermocouple 1 || |Assert IRG
ticks =28 Thermorougle & e Gz
e EEmA] RT Trigger PWM 1 PWHM L local Mod1jCIC
=4 Mod1/CIC loral vixe |
| ®] Mod jAutozero

Mod1/Autazers local Oz
{eNsNeNeNwNeNeNvNeRsNeNeNNeNeNNeRsNeNshs]eNeNeNen NeNeNNaNeN N eheNeNaNNeNeNeN N N eNeN N eNeN eNeN N eN N eNeNeheN RN eN N eHa
| @ won I8

—

Analog Input Acquisition Loop

ODOO0O0OOO0O0NO0000000000000000000000

TC Period (us) [Acquire analog inputs at max module rate
=

Thermacouple 1 local

BN Hod1/TCo

Ban Hodl/cIc Mad1/CIC local

B s Mod1 fAutozera I»@
ModijAutozeralocal
FERE]|

[sNeN=NeNsNaNeNsNeNne e NN NN NN NN RN NN N NN N NN es]

o 2co 5881

Specialty Digital Module (PWM) Loop
e o R e
PWM O Perind (Us)
=
PWM 1 Periad {us)

[vs=4

Loop Period (uSec)

OO0 OO0OO00000N 0000000000000 a0oaD

n|

sy
_ S ModD/DoL B

TRET

Figure 8.32. Develop a simple FPGA application to act as an FPGA scan engine.

After you have implemented a simple scan engine in the FPGA, it is time to port the real-time portion of the
application to communicate with the custom FPGA scan rather than the current value table built into scan mode. To
accomplish this, you need to first convert all I/O variable aliases to single-process shared variables with the real-time
FIFO enabled. The main difference between the two variables is while I/O variables are automatically updated by a
driver to reflect the state of the input or output channel, a single-process shared variables are not updated by a
driver. You can change the type by going to the properties page for each IOV Alias and changing to single-process.

Tip: If you have numerous variables to convert, by exporting to a text editor and changing the properties you can easily
convert a library of IOV aliases to shared variables. To make sure you get the properties correct it is easiest if you first
create one “dummy” single-process shared variable with single element real-time FIFO enabled in the library then
export the library to a spreadsheet editor. While in the spreadsheet editor, delete the columns exclusive to IOVs and
copy the data exclusive to the share variables to the IOV rows. Then import the modified library into your new project.
The 10V Aliases are imported as single-process shared variables. Because LabVIEW references shared variables and
IQV Aliases by the name of the library and the name of the variable, all instances of IOV Aliases in your VI are
automatically updated. Finally, delete the dummy shared variable that was created before the migration process.

220

3 Project Explorer - PID Examp E]@ mpmject Explorer - Untitled Pr E]@

File Edit Wiew Project Operate Tools ‘Window Help File Edit Wew Project Operste Tools MWindow Help
[hee +bax|gr|E-¢ IS xhox|Sk|@m- .
Ttems | Files Items | Files
= E; Project: PID Example.lvproj =- Egl, Project: Untitled Project 3 A
B My Computer 4 B My Computer
= [, CompartRIO (192.168.1.123) = il RT Single-Board RIO (0.0.0.00
= [cRIO =+ T0Library. b hlewv 4
- - Tlew 4 T
= L;‘ Zommunications | o Thermocouple 1 Open
PR stop Open i @' Heater 1 Explore...
[10 Library. b Explore... Lo @* Thermocouple 1-5v| oo in Files Yiew ChrleE
i @ Thermocouple Shaw in Files View ChrHE L;‘ iZommunications Library
§ Heater 1 - |, TopLevel.wi add 4
@&" Thermacoupls Add 4 = §E FPGA Target (sbRIO-Se Find Project Ttems. .
- [, TopLevelvi Find Praject Ttems. . [Cnboard 1j0
= [Chassis (cRIO-9074) +) Moda Save 3
+ WY Mo (Sloe 1, Wr{ 53 4 + o Mods i N
i) Mod2 (Slat2, MI| ging » 4 [MadC
+ 7-57 Dependencies #- [ModD Show Error Window
"&_ Bulld Specifications Show Error Window + [Madi Deplay
Deploy 40 MHz Onboard Clg Deploy &l
Deplay &l Wy Modt (Slot 1, 122 Undleploy
Undeplory I‘ Mot (11 9205) & Autodeploy Yariables
o Autodeplay Variables : I' Mad (NI 9263) mMultiple Yariable Editor. ..
Multiple: Yariable Edior. . - D Modc (1 94254 Create Variables. ..
Create Variables.. - D Moo (1947 Create Bound Variables...

Create Bound Yariables. .. Expart Variables...

Export Variables. .. k Import Variables. ..
Import Variables., .. k

B test.csv) -
A A B 4 D E F G H 1 J K L M N o} P Q
1 Name Type I\."a(Tx:)a Global Global:Eni Industrial Industrial: Industrial: Network:s Network:l Network:I Network:| Network:| Real-Time Real-Time Real-Time Real-Time Features:
2 ThermocoDouble |industrial on FALSE 2readonly TRUE CompactR TRUE FALSE
3 Heater1 Double |lndugidal 20 IRUE e EUE Compadtl TRUE _ EAISE
4 ThermocoDouble |Global on FALSE FALSE FALSE _on FALSE il FALSE
=
1, Leave variable types alone. 2. Copy "dummy” shared variable settings to all IOVs. 3. Save variable list as .csv,

Figure 8.33. You can easily convert an IOV Alias Library to shared variables by exporting the variables to a spreadsheet,
modifying the parameters, and importing into your new target.
The final step for implementing an FPGA based scan engine and shared variable current value table is building the
real-time task to read data from the FPGA and constantly update the current value table. The FPGA 1/O you are
adding to the current value table is deterministic, so you again use the method described in the “Programming with
LabVIEW FPGA" section, except for now you create the real-time portion of that code.

To read data from the FPGA based scan engine, create a timed loop task set to the desired scan rate in your top-level
RT VI. This timed loop is the deterministic I/O loop, so it should be set to the highest priority. To match the control loop
speed of your previous scan mode application, set the period of this loop to match the period previously set for scan

mode. Any other task loops in your application that were previously synchronized to the scan also need to change their

timing source to the 1 kHz clock and set to the same rate as the 1/O loop.

The 1/O scan loop pushes new data to the FPGA and then pulls updated input values. The specific write and read Vs
are also responsible for scaling and calibration of analog and specialty digital 1/O.

eNeNeNeNeNeNeNsNeN~ieNeNeNeNeNeNeNeNeN-NeNeNeNsieNeeNeNeieNeieN-NeNeNeieN-NeieNeNeNeNei-NeNeNeNej-NeNeNeNejeNeieNeNeNeNeieN=geNeieiexs]
[intialzation Rowtine [Control and Measurement Tasks [hutdown Routine]

W

[FPGA 1j0 Scan Loop

RT Wirite FPGA Sean 104 RT Read FPGA Scan 10.vi

2] N) .| L i
L J
o

j=ReReN=NeNeNeNeReN=N=NeNeNeNeReR=N=NeNeNeReReR=NNuNeNeNeReh=NNeNeNeRehen=NuNeNeNeReheh=NuneNeNeReneh=nunaNeehenen=gutaNeenenan=nunake]

Figure 8.34. The FPGA I/O Scan Loop mimics the CompactRIO Scan Mode feature by deterministically communicating the most recent
input and output values to and from the FPGA /O and inserting the data into a memory table.

221

13 RT Write FPGA Scan 10.vi Block Diagram on Single-Board RIO PID Example. lvproj/RT Singtel| 2 = 8. [[3/29
Fle Edt View Project Operate JTooks window Help
©][9] 2] [ba] @] -+ [t Aopicaton ot~ £~ [~ [0~ |l rd
-~
Ezﬁiip\?;if;ﬂaae [Perform applicable scaling] [Update FPGA 10|
FPGA VI Reference In FPGA VI Reference Out
== =]
P Perind (sec)
0.001
i 1on @ |> b
error In = i i error Qut
E_ nla® o1k B =]
-
Single-Board RIO PID Example. WprojjRT single-Board RIO| < >

Figure 8.35. The RT Write FPGA Scan 10 VI pulls data from the memory table using a real-time FIFO single-process shared variable,
scales values with appropriate conversion for the FPGA Scan VI, and pushes values to the FPGA V.

18 RT Read FPGA Scan 10.vi Block Diagram on Single-Board RIO PID Example. @2/ = ®. (= [0/

Eile Edit Wew Project Operate Tools ‘Window Help
& l@l cu@ Ia’|uj} | 13pk Application Font |+ ” [1~ ||F|]:v| |C§')v I|;d| &
Read FPGA 1/0 Perform applicable scaling a
able using shared Yariable

FPGA VI Reference In E FPGA VI Reference Qut
P S B |
error In E Thermorouple 1 mER L s Error Out
==tk ModjCIC ¥ a [[Ty —
Modlfautozera

Single-Board RIO PID Example.lvprojfRT Single-Board RIO | ¢ Py

Figure 8.36. The RT Read FPGA Scan 10 VI pulls all updates from the FPGA scan, performs applicable conversions and scaling,
and publishes data to the memory table using a real-time FIFO single-process shared variable.

After building the host interface portion of a custom FPGA I/O scan to replace scan mode, you are ready to test and

validate your ported application on the new target. Ensure the FPGA VI is compiled and the real-time and FPGA targets
in the project are configured correctly with a valid IP address and RIO resource name. After the FPGA VI is compiled,
connect to the real-time target and run the application.

Because the RIO architecture is common across NI Single-Board RIO, CompactRIO, and R Series FPGA 1/O devices,
LabVIEW code written on each of these targets is easily portable to the others. As demonstrated in this section, with
proper planning, you can migrate applications between all targets with no code changes at all. WWhen you use specialized
features of one platform, such as the CompactRIO Scan Mode, the porting process is more involved, but, in that case,
only the I/O portions of the code require change for migration. In both situations, all the LabVIEW processing and control
algorithms are completely portable and reusable across RIO hardware platforms.

222

	Cover
	CONTENTS
	Chapter 8
Deploying and Replicating Applications
	Application Deployment
	Deploying Applications to CompactRIO
	Deploy a LabVIEW VI onto Volatile Memory
	Deploy a LabVIEW VI onto Nonvolatile Memory

	Deploying Applications to a Touch Panel
	Configure the Connection to the Touch Panel
	Deploy a LabVIEW VI onto Volatile or Nonvolatile Memory
	Deploy an Executable Touch Panel Application to a Windows CE or XP Embedded Target

	Deploying Applications that Use Network-Published Shared Variables
	Network Shared Variable Background
	Deploy Shared Variable Libraries to a Target That Hosts Variables
	Undeploy a Network Shared Variable Library
	Deploy Applications That Are Shared Variable Clients

	Recommended Software Stacks for CompactRIO

	System Replication
	Real-Time Replication Utility VIs
	Building a Replication Utility
	NI-RIO System Replication Tools

	IP Protection
	Locking Algorithms or Code to Prevent Copying or Modification
	Protect Deployed Code
	Protect Individual VIs
	Lock Code to Hardware to Prevent IP Replication
	Acquire the MAC Address of Your CompactRIO System
	CompactRIO Information Retrieval Tools

	Porting to Other Platforms
	LabVIEW Code Portability
	NI Single-Board RIO
	Port CompactRIO Applications to NI Single-Board RIO or R Series Devices
	Example of Porting a CompactRIO Scan Mode-Based Application to NI Single-Board RIO

