Owning Palette: State Feedback Design VIs
Requires: Control Design and Simulation Module
Uses the Ackermann formula with the controllability matrix to determine the controller feedback gain matrix K that places the closedloop poles in the locations you specify. You also can use this VI to determine the observer gain matrix L that places the observer poles in the locations you specify. You can use the CD Ackermann VI with singleinput multipleoutput (SIMO) or multipleinput singleoutput (MISO) systems when placing closedloop control or observer poles, respectively.
StateSpace Model contains a mathematical representation of and information about the system of which this VI places closedloop poles in desired locations using the Gain in the state feedback. You also can use pole placement to calculate the estimator gain and set the pole locations of the full state observer.  
Poles specifies the closedloop pole locations.  
Gain Type specifies the type of gain this VI returns in the Gain parameter. Use the Controller Gain with the CD StateSpace Controller VI. Use the Observer Gain (Predictive) and Observer Gain (Current) with the CD Discrete Observer function and the Continuous Observer function. For discrete systems, the Observer Gain (Predictive) relates to the Observer Gain (Current) through the following relationship: Observer Gain (Predictive) = A . Observer Gain (Current). For continuous systems, the notion of current and predictive time does not apply, so specifying either observer gain returns the correct gain value.


error in describes error conditions that occur before this node runs. This input provides standard error in functionality.  
Gain returns the feedback gain, according to the value you specify for the Gain Type parameter, that produces a closedloop system such that the poles are equal to the values you specify in the Poles parameter.  
Actual Poles are the eigenvalues of the closedloop system matrix Ã. The definition of Ã depends on the value you specify for the Gain Type parameter. If Gain Type is Controller Gain, Ã = A – BK. If Gain Type is Observer Gain (Predictive), Ã = A – LC, where L is the Gain this VI returns. If Gain Type is Observer Gain (Current), Ã = A – LCA. 

error out contains error information. This output provides standard error out functionality. 
This VI does not support delays unless the delays are part of the mathematical model that represents the dynamic system. To account for the delays in the synthesis of the controller or state estimator, you must incorporate the delays into the mathematical model of the dynamic system using the CD Convert Delay with Pade Approximation VI (continuous models) or the CD Convert Delay to Poles at Origin VI (discrete models). Refer to the LabVIEW Control Design User Manual for more information about delays and the limitations of Pade Approximation.