# Calculating Characteristic Frequencies and Orders (Sound and Vibration Measurement Suite)

Sound and Vibration Measurement Suite 6.0 Help
December 2007

NI Part Number:
372416A-01

»View Product Info

Faults on the inner race, outer race, or rolling elements of a rolling-element bearing exhibit peaks of characteristic frequencies or orders in the power spectrum of the envelope signal of the vibration signal. You can calculate the characteristic frequencies or orders of a rolling-element bearing and compare them with the peaks in the power spectrum of the envelope signal to identify the source of the bearing faults.

The following illustration shows the structure and the geometric parameters of a typical rolling-element bearing.

Dball is the bearing ball diameter, Dpitch is the pitch diameter, and Φ is the contact angle between the ball and the race.

You can use the following equations to calculate the characteristic frequencies of the bearing.

Characteristic Bearing Frequency Equation
Fundamental train frequency, fFTF
Ball spin frequency, fBS
Outer race frequency, fOR
Inner race frequency, fIR

where fs is the rotational frequency of the shaft in revolutions per second, and N is the number of rollers or balls.

You can use the following equations to calculate the characteristic orders of the bearing.

Characteristic Order Equation
Fundamental train order, oFTF
Ball spin order, oBS
Outer race order, oOR
Inner race order, oIR

As shown in the table above, the characteristic orders are functions of the geometric parameters of the bearing and therefore are constant values.

The equations for calculating the characteristic frequencies and orders assume no slippage of the rollers or balls when the bearing is running. In real-world applications, however, the actual characteristic frequencies or orders might differ slightly from the calculated frequencies or orders because of slippage.

Your Feedback!  Poor  |  Excellent    Yes No
 Document Quality?